

Saydx specifiation

	Introduction
	Main goals

	Communication layers

	Comparisons with other transport protocols
	HDF5

	JSON

	MessagePack

	CSlib

	MxUI

Introduction

There is a clear need for a general and robust transport protocol to enable data
exchange and communication between scientific software packages that need to
interact. To suport this and demonstrate its use, a library implementation of
the protocol should be developed and offered to the general scientific computing
community. The proof of concept application for the library should be
demonstrated for atomistic simulation packages, but the protocol and library
need to be general enough to satisfy the needs of other kind of scientific
software as well.

There are a number of methods for communication between codes. However are
either special purpose implementations or do not abstract this task for the
developers of the communicating codes.

Main goals

	Data exchange should be robust, guaranteeing reliable transmission.

	One-to-one and eventually many-to-one and many-to-many communication scenarios
should be supported.

	Exchange of complex data (e.g. all the information needed to initialize and
start a simulation) should be straightforward.

	The protocol should allow communication through different communcation
channels.

	Cross language support for Fortran, C/C++ and Python family langauages with
cross-platform numerical model support.

Communication layers

In order to ensure flexibility, the data exchange protocol needs (probably)
three layers of implementation:

	Transport layer: deals with the technicalities of the communication. It
should allow multiple transport channels, e.g. file I/O, socket
communication, loadable code modules, etc. It should be extensible for future
channels and guarantee communication reliability.

	Message layer: Provides a flexible message format, which can be transmitted
through the low-level layer betwen the applications.

	High-level communication layer: Domain specific protocol composed of
messages, as customised for the scientific codes’ using the library.

Transport layer

It would be good if many different transport channels can be supported and
they are treated on the same footing. It would be desirable, if data could be
exchanged via

	File I/O (text and binary)

	Socket communication

	MPI-messaging

	Binary API (enabling direct communication between C, Fortran, Python,
etc. programs)

For the socket and MPI channels, we could probably directly use Steve Plimptons
cslib library [https://cslib.sandia.gov/], which uses the quite robust ZeroMQ
framework for the socket communication. It is already part of LAMMPS but could
also be used as a stand-alone library without LAMMPS. Alternatively, one could
write something similar.

Message layer

One should use messages that are flexible enough to carry complex
information. For scientific applications the exchange of array data seems to be
enough, provided several arrays can be sent as one message and different data
types are supported within a message.

Example: Driver (a molecular-mechanics (MM)-program) sends data to a calculator
(quantum-mechanical (QM)-program) to initialize it. This can be quite complex,
as QM-programs usually require a lot of initialization parameters (Hamiltonian
settings, basis set settings, various control settings, etc.). The message
format needs to be flexible enough to allow for optional components, so that the
driver has to specify only required settings and also optional ones which it
wishes to override.

This could be easily realized by using a data tree as a message. A possible
structure could be like a simplified XML DOM-tree with following specification:

	Each node of the tree is named (like in XML).

	Each node of the tree can either contain further nodes (a container node) or
data (data nodes), but never both. Consequently, data nodes were the leaves of
the tree and have only container nodes as parents.

	Each data node contains a single array of a given type and shape or a scalar
as data. The data is in native binary format.

	Optional: the nodes should contain attributes to store additional information
(e.g. the unit of the data in the node, etc.). To make things simple, the
attributes should be text attributes, like in XML.

The sender would assemble a tree with the necessary information and transmit it
via the transport layer. The receiver would then query the received tree, look
for the presence / absence of given nodes and extract the necessary information
from the tree.

I have already started a small C-library with this functionality, the saydx
[səeɪdɪks] library [https://github.com/saydx/libsaydx]. Although not finished
yet, it could be used as the message layer. It would provide the basic
infrastructure for tree manipulation, as well as routines to read and write
trees to file or to pass them from C to Fortran and vice-versa. Combined with
cslib, it could cover the functionality of the first two layers.

Array types

The message layer should understand / support following array data types:

	real numbers (4, 8 and eventually 16 bytes)

	complex numbers (composed of two real numbers)

	integers (4 and 8 bytes)

	logicals (represented by integers)

	characters (1 byte)

	strings (of arbitrary length)

	bytes

When the data is represented in binary form, the native representation of the
x86_64 architecture should be used. So, at least in its first version, the
binary version of the protocol won’t be architecture independent. We could allow
for passing the arrays also in text form if this ever becomes an issue. (The
saydx library can already store the tree in text form.) Implementing
architecture independence on the binary level (as in HDF5) would be probably an
overkill.

Array indexing

The arrays should be stored in the row-major format. The data should never be
reordered in the message layer. In order to ensure, that normal indexing
techniques (row-major in C and Python, column-major in Fortran) allow a
continuous traversal in memory, the indexing tuple (but not the data!) should be
reversed when the array shape is queried in a column-major language.

Protocol layer

In contrast to the other two layers, the protocol layer must be domain specific,
as different scientific applications need different data to be communicated.

As a proof of concept, communication between atomistic simulation packages could
be implemented. One could start from the i-Pi protocol, as several packages [https://wiki.fysik.dtu.dk/ase/ase/calculators/socketio/socketio.html] are
using it already, base it on the new message format and extend it with
additional components.

As an example, the transmitted data for passing the geometry between driver and
client could look like the structure sketched below. The XML-notation is used to
indicate nodes and the @ symbols indicate (binary) scalars or arrays of a
given type and shape in the leaves (e.g., @s is scalar string, @r8(2,3)
is a rank two array of 64 bit reals with shape (2, 3), etc.):

<ipi-message>
 <command>
 @s
 POSDATA
 </command>
 <data>
 <atom_positions>
 @r8(2,3)
 0.0 0.0 0.0
 0.0 0.0 1.0
 </atom_positions>
 <lattice_vectors>
 @r8(3,3)
 10.0 0.0 0.0
 0.0 10.0 0.0
 0.0 0.0 10.0
 </lattice_vectors>
 </data>
<ipi-message>

The receiver could then query the transmitted tree using following Fortran
pseudo code:

call receive_tree(root_node)
if (root_node%get_name() /= "ipi-message") then
 call error("Invalid message protocol")
end if

call get_child_data(root_node, "command", commandstr)
if (.not. allocated(commandstr)) then
 call error("Could not find command node or it contains wrong data type")
end if

select case (commandstr)

case ("POSDATA")

 call get_child(root_node, "data", data_node)
 if (.not. data_node%is_associated()) then
 call error("Data node not found")
 end if

 call get_child_data(data_node, "atom_positions", atom_positions)
 if (.not. allocated(atom_positions)) then
 call error("Node 'atom_positions' not found or it contains wrong data type")
 end if
 if (all(shape(atom_positions) /= (3, natom)) then
 call error("Array in node 'atom_positions' has invalid shape")
 end if

 ! Only query tree for lattice vectors if the system is periodic
 if (periodic) then

 call get_child_data(data_node, "lattice_vectors", lattice_vectors)
 if (.not. allocated(lattice_vectors)) then
 call error("Node 'lattice_vectors' not found or has wrong data type)
 end if
 if (shape(lattice_vectors) /= (3, 3)) then
 call error("Array in node 'lattice_vectors' has invalid shape')
 end if

 end if

 [...]

end select case

The lower lying layers warranty that the entire data tree (as sent by the
sender) gets trasmitted before the receiver can start to read it. The receiver,
therefore, can be sure that it has all the data the sender wanted
communicating. It does not need to assume the shape / size of the transmitted
data when receiving the message and hope for the best (as it is the case with
the bare socket based i-Pi protocol). The arrays in the tree have type and shape
information. The receiver can check whether they match its expectations and
handle the error gracefully if not.

Debugging communication problems (e.g. sender and receiver implement the
high-level protocol differently) should be also straightforward, as the
saydx-library contains routines to write the trees from memory to disk.

Comparisons with other transport protocols

There are already several solutions with considerable overlap with the suggested
protocol. In order to get a clearer view as to whether it is worth implementing
another new protocol, some existing are described and compared against the goals
of the suggested SAYDX protocol. In this document, only the transport layer
should be discussed here. Possible higher level protocols based on SAYDX
(e.g. for exchanging data between atomistic simulation tools) should be
described and compared against existing options in a different chapter.

HDF5

HDF5 [https://www.hdfgroup.org/solutions/hdf5/] is an open-source library
(partially BSD, partially MIT licensed) using (and defining) its own data
storage format. It is widespread in the scientific community and bindings exist
for almost all commonly used programming languages.

SAYDX is probably closest to HDF5 in spirit. The main similarities are:

	Basic building blocks are arrays of data. Type information about elements in
an array is stored only once for an array (together with the shape of the
array).

	Data is stored in binary format.

	Arrays can be arranged in a tree like structure with named nodes.

	HDF5 allows storage of data (of arbitrary type) at a node. This should be
possible in the SAYDX tree as well (although, only as string attributes).

Differences:

	HDF5 is pretty much file I/O oriented. Although it is possible to build up a
tree in memory, it is not clear to me (B.A.), whether this tree can then be
communicated to a routine in a library, other than being written to disc and
being reread again. In environments supporting FIFO, named pipes might be able
to partly address this, but this is operating system specific (BH). SAYDX
should allow for passing trees between program components (even if written in
different languages, e.g. Fortran and C) and running on a range of OSes.

	HDF5 is optimized for handling large amount of data. It had very advanced
features, like parallel I/O. On the other hand, it is a very complex library
which is not straightforward to build or link. SAYDX should be optimized for
more moderate data amounts (kilobytes to few megabytes, maybe up to a few
hundred megabytes). It should have much less features than HDF5 (e.g. no
parallel I/O), but hopefully then be much easier to maintain, port, build and
to link.

	HDF5 requires the path to each node in the tree to be unique. SAYDX should be
more like XML, allowing a node to have several children with the same name
(although open for discussions). Using XML-notation to indicate nodes, in
SAYDX one could have:

<simulation>
 <frame>
 <timestep>1</timestep>
 <coordinates>...</coordinates>
 [...]
 </frame>
 <frame>
 <timestep>2</timestep>
 <coordinates>...</coordinates>
 [...]
 </frame>
</simulation>

while in HDF5 (using the same notation) one would have to write

<simulation>
 <frame1>
 <coordinates>...</coordinates>
 [...]
 </frame1>
 <frame2>
 <coordinates>...</coordinates>
 [...]
 </frame2>
</simulation>

JSON

The JSON protocol [https://www.json.org] has become very popular in the last few
years. It allows a standardized data exchange between different
application. Being used a lot in informatics (and also in science), libraries
exist for (probably) all programming languages used in science.

Similarities:

	Data can be arranged in a structure, which one may interpret as a tree with
named nodes (in JSON they are actually a combination of lists and
dictionaries).

Differences:

	JSON was not designed to exchange scientific (numeric) data. Its JavaScript
implementation has only one numerical data type (double precision float),
although other implementations may handle numerical data differently. SAYDX
should offer all important numeric data types (e.g. from half-precision up to
quadruple precision – given appropriate compiler support)

	JSON was not designed to exchange array data. Its “array” construct is
basically a flat list where each element can be of arbitrary data type. Type
information must therefore be stored for each element separately. Shape
information (e.g. for a multi-dimensional array) must also be stored
separately in the tree.

	JSON was not designed to exchange large amount of numeric data. It is a text
based format, so binary data would have to be converted to text first and then
back again to binary format.

MessagePack

MessagePack [https://msgpack.org/] is a binary protocol to exchange data
between applications. Implementations seem to be present in nearly all relevant
programming languages, but apparently not Fortran so far. It uses similar
concepts to JSON, but is binary based and has a much better handling of
numerical data than JSON. It has support for single and double precision float
numbers and allows definition of extended types.

Similarities:

	Data can be arranged in a structure, which one may interpreted as a tree with
named nodes (actually a combination of lists and dictionaries).

	Data is stored in / serialized to a binary format.

Differences:

	Similar to JSON, MessagePack’s array concept is a flat list containing objects
of arbitrary types, with the same disadvantages as above.

	As a consequence of the additional type information is stored with each
element, hence adding a native (Fortran or C) array to the tree always
requires copying and reading out the array from the tree into a native array
as well. This is may not be a problem if the tree is communicated via sockets,
but could raise efficiency problems if the tree is passed via an API between
various components of an application.

CSlib

CSlib [https://cslib.sandia.gov/] is a client-server library for
interchanging data between applications. It allows for exchanging data via
files, sockets (via ZeroMQ [https://www.zeromq.org]) or MPI. It is already
part of LAMMPS [https://lammps.sandia.gov] and should also exist as a
separate project under GitHub (apparently it has not been uploaded yet). Its
licensing is unclear, probably modified BSD [https://cslib.sandia.gov/open_source.html], although some documents mention
it as GPL-licensed.

Similarities:

	CSlib passes data in binary form. It has data types suited for scientific
applications.

	It is possible to transmit multi-dimensional arrays with CSlib.

Differences:

	CSlibs messages are composed of fields, each field being assigned to have an
arbitrary data type with zero or more entries of that type. It does not have
the concept of a hierarchical tree. However, with an appropriate wrapper, it
could be probably used to transmit a tree.

	While it is possible to transmit multi-dimensional arrays with CSlib, it seems
that the array shape is not transmitted explicitly (only the number of
elements). This shape data would therefore have to be communicated as an extra
message.

	CSlib is not designed for passing a tree via an API between parts of an
application (e.g. caller passes a tree to a library routine and receives
another tree in response), but concentrates on sending it via sockets, file
I/O or MPI-messaging.

MxUI

The MxUI [https://mxui.github.io/] library wraps MPI calls for simplifying
Multiple-Program Multiple-Data communication. The library provides a C++ header
only implementation. It can also interpolate the transmitted data.

Similarities:

	Data can be arranged in structures, of arbitrary type

Differences:

	Templated push and fetch operations

	Processing (interpolation) of data by transmission

Index

 nav.xhtml

 Table of Contents

 		
 Saydx specifiation

 		
 Introduction

 		
 Main goals

 		
 Communication layers

 		
 Transport layer

 		
 Message layer

 		
 Protocol layer

 		
 Comparisons with other transport protocols

 		
 HDF5

 		
 JSON

 		
 MessagePack

 		
 CSlib

 		
 MxUI

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

